Improved upper bounds on the ML decoding error probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum
نویسندگان
چکیده
The ensemble performance of parallel and serial concatenated turbo codes is considered, where the ensemble is generated by a uniform choice of the interleaver and of the component codes taken from the set of time varying recursive systematic convolutional codes. Following the derivation of the input-output weight enumeration functions of the ensembles of random parallel and serial concatenated turbo codes,the tangential sphere upper bound is employed to provide improved upper bounds on the block and bit error probabilities of these ensembles of codes for the binary-input additive white Gaussian noise channel, based on coherent detection of equi-energy antipodal signals and maximum likelihood decoding . The influence of the interleaver length and the memory length of the component codes are investigated. The improved bounding technique proposed here is compared to the conventional union bound and to a recent alternative bounding technique by Duman and Salehi which incorporates modified Gallager bounds. The advantage of the derived bounds is demonstrated for a variety of parallel and serial concatenated coding schemes with either fixed or random recursive systematic convolutional component codes, and it is especially pronounced in the region exceeding the cutoff rate, where the performance of turbo codes is most appealing. These upper bounds are also compared to simulation results of the iterative decoding algorithm.
منابع مشابه
Bounds on the error probability ofml decoding for block and turbo-block codes
The performance of either structured or random turbo-block codes and binary, systematic block codes operating over the additive white Gaussian noise (AWGN) channel, is assessed by upper bounds on the error probabilities of maximum likelihood (ML) decoding. These bounds on the block and bit error probability which depend respectively on the distance spectrum and the input-output weight enumerati...
متن کاملDecoding Error Probability of Binary Linear Block Codes
The performance of maximum-likelihood (ML) decoded binary linear block codes is addressed via the derivation of tightened upper bounds on their decoding error probability. The upper bounds on the block and bit error probabilities are valid for any memoryless, binary-input and outputsymmetric communication channel, and their effectiveness is exemplified for various ensembles of turbo-like codes ...
متن کاملOn Union Bounds for Random Serially Concatenated Turbo Codes with Maximum Likelihood Decoding
The input-output weight enumeration (distribution) function of the ensemble of serially concatenated turbo codes is derived, where the ensemble is generated by a uniform choice over the interleaver and a uniform choice of the component codes from the set of time varying recursive systematic convolutional codes. The conventional union bound is employed to obtain an upper bound on the bit error p...
متن کاملTangential Sphere Bounds on the Ensemble Performance of ML Decoded Low Density Parity Check Codes
Low density parity check (LDPC) codes were rediscovered by MacKay and Neal [4], after being first introduced in 1961 by Gallager in his seminal work [2, 3]. The experiments with LDPC codes, indicate that like turbo codes [1], they exhibit low bit error rates at low signal to noise ratios. The performance of LDPC codes was extensively investigated since and their exceptional performance with the...
متن کاملPerformance of Hybrid Concatenated Trellis Codes CPFSK with Iterative Decoding over Fading Channels
Concatenation is a method of building long codes out of shorter ones, it attempts to meet the problem of decoding complexity by breaking the required computation into manageable segments. Concatenated Continuous Phase Frequency Shift Keying (CPFSK) facilitates powerful error correction. CPFSK also has the advantage of being bandwidth efficient and compatible with non-linear amplifiers. Bandwidt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 46 شماره
صفحات -
تاریخ انتشار 2000